

DIATERMO MB 120 T

High Frequency Surgical Equipment

USER MANUAL

TABLE OF CONTENTS

IMPORTANT.....	1
INTRODUCTION.....	2
GENERAL DESCRIPTION	2
INTENDED USE/ SECTORS OF APPLICATION.....	3
INTENDED USER.....	4
INTENDED PATIENT POPULATION.....	4
STANDARD AND OPTIONAL COMPOSITION.....	5
ELECTROPHYSICAL PRINCIPLES.....	9
OPERATING TECHNIQUES	14
MONOPOLAR CUT	14
MONOPOLAR COAGULATION.....	15
BIPOLAR COAGULATION.....	17
CONTRAINDICATIONS	18
SAFETY	19
PRECAUTIONS	22
INSTALLATION	26
PATIENT SAFETY	27
CORRECT PATIENT POSITIONING	28
CORRECT APPLICATION OF THE NEUTRAL ELECTRODE	28
ELECTROSURGERY AD HF IN LAPAROSCOPY.....	31
COMMISSIONING.....	33
DESCRIPTION OF SYMBOLS	35
PACKAGING LABEL	37
CORRECT CONNECTION OF ACCESSORIES AND/OR COMPONENTS	38

FRONT PANEL.....	43
OPERATING MODES.....	43
CONTROL AND IGNITION	43
PROGRAMS.....	45
SURGERY	47
PREPARATION OF THE CURRENTS THAT CAN BE SUPPLIED	48
PROGRAMS SECTION	49
NEUTRAL ELECTRODE CONTROL	51
DISPENSING SCREEN.....	51
SETTINGS	52
UPDATES	53
REAR PANEL	54
TECHNICAL FEATURES	55
HARDWARE REQUIREMENTS	56
MAINTENANCE.....	57
GENERAL	57
CLEANING THE CONTAINER.....	57
CLEANING AND STERILIZATION OF ACCESSORIES	57
TROUBLESHOOTING GUIDE.....	58
REPAIRS	59
CHECKING THE EQUIPMENT BEFORE USE	60
CONTROL AND MEASUREMENT OF SAFETY FUNCTIONS	60
DIAGRAMS	61

IMPORTANT

These instructions are a fundamental part of the equipment for high-frequency surgery, as they describe its operation and use; therefore, they must be read carefully before beginning the installation and use of the equipment.

All safety instructions or warning notes must be observed. Be assured that these operating instructions are provided with the equipment when it is transferred to other operating personnel.

If you need Technical Assistance, please contact LED SpA.

Produttore / Manufacturer

LED SpA

ELECTRONIC DESIGN AND PRODUCTION

Via Selciatella 40 – 04011 Aprilia (LT) - Italy

www.led.it

INTRODUCTION

GENERAL DESCRIPTION

The **DIATERMO MB 120 T** electrosurgical equipment is designed to deliver currents suitable for both monopolar and bipolar cutting, coagulated cutting and coagulation modes. Currents can be supplied for the entire duration of the output circuit activation.

Neutral reference electrodes can be used either single-plate or two-zone conductive area type.

The unit is controlled via buttons and indicators located on the front panel, while the mains power socket is located on the rear panel.

The equipment is equipped with automatic safety systems that constantly monitor internal parameters and report any anomalies or faults detected.

Operating parameters are continuously stored, allowing the equipment to automatically restore the last used values each time the operating mode is switched on or changed.

The level of the emission acoustic signal is adjustable, allowing each operator to adapt it to the noise conditions of the working environment.

The equipment can be operated with handpieces equipped with buttons or with handpieces without buttons, controlled by a single pedal or double pedal. In addition, bipolar clamps can be connected to the unit using the optional adapter.

INTENDED USE/ SECTORS OF APPLICATION

Medical device intended for temporary use for surgical operations in which cutting and/or coagulation of soft tissues is required, with a monopolar and/or bipolar technique, for survey minor and/or major in open and/or intra-operative percutaneous and/or endoscopic and/or laparoscopic.

The **DIATERMO MB 120 T** equipment is designed to be used in the following sectors:

Description	DIATERMO MB 120 T
Electrosurgical Unit Code	GMA10100. T201
Outpatient Surgery	●
Dentistry	●
Dermatology	●
Endoscopy	-
First aid	●
Gastroenterology	-
General Surgery	-
Gynecology	-
Neurosurgery	-
Ophthalmology	-
Orthopedics	-
Otorhinolaryngology	-
Pediatric Surgery	-
Plastic Surgery	-
Pulmonology	-
Urology	-
Vascular Surgery	-

● = Usable

- = Not usable

INTENDED USER

Device for professional use. The use of the equipment is reserved for medical personnel with a degree in medicine specialized in high frequency electrosurgery.

INTENDED PATIENT POPULATION

The device is intended for use in adult patients – both male and female – 18 years of age and older, except those listed in the *Contraindications* section. If necessary, the device can also be used in paediatric patients. In these cases, its use must comply with the specific indications and instructions provided by qualified medical professionals specialized in high frequency electrosurgery. The decision to apply the device in the paediatric population remains at the discretion of the treating physician, based on clinical judgement and the nature of the intended surgical procedure.

STANDARD AND OPTIONAL COMPOSITION

Description	DIATERMO MB 120 T
Electrosurgical Unit Code	GMA10100. T201

DIATERMO MB 120 T		
Code	Description	Quantity
00100.03	Power supply cable 2 m SIE-IEC	■/1
30549	Multi-purpose handpiece	■/1
00304.00	Single waterproof footswitch	■/1
00401.00	NEUTRAL – Metal neutral electrode 120 x 160 mm with cable	■/1
00500.03	ELECTRODE – Assorted electrode kit 5 cm (6 pcs)	■/1
00100.00	Power supply cable 2 m IT-IEC	○
00100.01	Power supply cable 5 m SIE-IEC	○
00100.04	Power supply cable 2 m USA-IEC	○
00100.05	Power supply cable 2 m GB-IEC	○
00100.07	Power supply cable 2 m BR-IEC	○
00100.09	Power supply cable 2 m AU-IEC	○
00100.10	Power supply cable 5 m JP-IEC	○
00201.02_S	PENCIL – Autoclavable micro-needle handpiece	○
00205.40	PENCIL S – Handpiece with buttons	○
00206.00	PENCIL – Handpiece without buttons	○
00206.40	PENCIL – Handpiece without buttons	○
00304.04_S	Single waterproof footswitch	○
00401.01	NEUTRAL – Metal neutral electrode 240 x 160 mm with cable	○
00401.02	NEUTRAL – Metal neutral electrode 120 x 160 mm with autoclavable cable	○
00401.03	NEUTRAL – Metal neutral electrode 240 x 160 mm with autoclavable cable	○
00401.10	NEUTRAL – FLEX metal neutral electrode 210 x 120 mm, autoclavable, without cable	○
00401.11	NEUTRAL – FLEX metal neutral electrode 210 x 120 mm with cable	○
00401.12	NEUTRAL – FLEX metal neutral electrode 210 x 120 mm, autoclavable, with cable	○
00401.20	NEUTRAL – FLEX S metal neutral electrode 210 x 120 mm, autoclavable, without cable	○

DIATERMO MB 120 T		
Code	Description	Quantity
00401.21	NEUTRAL – FLEX S metal neutral electrode 210 x 120 mm with cable	○
00401.22	NEUTRAL – FLEX S metal neutral electrode 210 x 120 mm, autoclavable, with cable	○
5365A	NEUTRAL – Metal neutral electrode 120 x 160 mm	○
0350	Disposable neutral electrode (F7805)	○
00305.03_S	Waterproof dual footswitch (5 pin)	○
00402.00	CONNECTION – Monopolar cable M4–F4 3 m	○
00402.01	CONNECTION – Monopolar cable M4–F2.8 3 m	○
00402.02	CONNECTION – Monopolar cable M4–MP4 3 m	○
00402.03	CONNECTION – Monopolar cable M4–EU	○
00402.04	CONNECTION – Monopolar cable M4–F2÷2.8 mm	○
00404.07	Neutral electrode connection cable F7915 / F7930	○
00404.08_S	CONNECTION - Disposable neutral electrode connection cable / 5365	○
00404.09	CONNECTION – Autoclavable cable for disposable neutral electrode connection 5365-6429/FLEX	○
00404.10	CONNECTION – Cable for USA-type neutral plate	○
00404.11	CONNECTION – Autoclavable cable for USA-type neutral plate	○
00411.00	CONNECTION – Bipolar cable 3 m EUR	○
00412.00	CONNECTION – Bipolar TWIN cable	○
00413.00	CONNECTION – Bipolar cable for Artery Sealer	○
00414.00	CONNECTION – Bipolar cable 3 m USA	○
00415.00	CONNECTION – Bipolar ENDO cable (MP3 – F3)	○
00416.00	CONNECTION – Bipolar ENDO cable (MP2 – F2.4)	○
00417.00	CONNECTION – Bipolar ENDO3 cable (MP2–F4)	○
00418.00	CONNECTION – Bipolar ENDO3 cable (2xM4 – 2xF2.4)	○
00498.00	Adapter for bipolar operation	○
00498.06	Adapter for neutral electrode 6.3 mm / Valley	○
00498.08	Adapter for bipolar operation EUR / 2xM2.5	○
00498.10	Adapter for bipolar operation EUR / 3xM4	○
00500.00/L	ELECTRODE – Assorted electrode kit (10 pcs) 10 cm	○
152-110	ELECTRODE – Blade electrode 7 cm	○
152-112	ELECTRODE – Curved blade electrode 7 cm	○
152-115	ELECTRODE – Blade electrode 16 cm	○
152-120	ELECTRODE – Needle electrode 7 cm	○
152-122	ELECTRODE – Curved needle electrode 7 cm	○

DIATERMO MB 120 T		
Code	Description	Quantity
152-125	ELECTRODE – Needle electrode 13 cm	○
152-130	ELECTRODE – Ball electrode Ø 2 mm 6 cm	○
152-132	ELECTRODE – Curved ball electrode Ø 2 mm 6 cm	○
152-140	ELECTRODE – Ball electrode Ø 3 mm 6 cm	○
152-142	ELECTRODE – Curved ball electrode Ø 3 mm 5 cm	○
152-145	ELECTRODE – Ball electrode Ø 3 mm 14 cm	○
152-150	ELECTRODE – Ball electrode Ø 4 mm 6 cm	○
152-152	ELECTRODE – Curved ball electrode Ø 4 mm 6 cm	○
152-160	ELECTRODE – Ball electrode Ø 5 mm 6 cm	○
152-162	ELECTRODE – Curved ball electrode Ø 5 mm 6 cm	○
152-165	ELECTRODE – Ball electrode Ø 5 mm 14 cm	○
152-175-10	ELECTRODE – Loop electrode 10 × 10 mm, l. 15 cm	○
152-190-13	ELECTRODE – Loop electrode 20 × 13 mm, l. 15 cm	○
152-190-20	ELECTRODE – Loop electrode 20 × 20 mm, l. 15 cm	○
152-195	ELECTRODE – Conization electrode 13 cm	○
110-700	BIPOLAR – Bi-turbinate electrode US	○
110-750NS	BIPOLAR – Bipolar forceps for artery sealing, l. 27 cm	○
110-755NS	BIPOLAR – Bipolar forceps for artery sealing, l. 25.5 cm	○
110-760NS	BIPOLAR – Bipolar forceps for artery sealing, l. 17 cm	○
310-110-05	BIPOLAR – Bipolar forceps 11.5 cm, TIP 0.5 mm	○
310-112-05	BIPOLAR – Curved bipolar forceps 11.5 cm, TIP 0.5 mm	○
310-140-10	BIPOLAR – Bipolar forceps 20 cm, TIP 1 mm	○
310-140-20	BIPOLAR – Bipolar forceps 20 cm, TIP 2 mm	○
310-142-10	BIPOLAR – Curved bipolar forceps 20 cm, TIP 1 mm	○
310-142-20	BIPOLAR – Curved bipolar forceps 20 cm, TIP 2 mm	○
310-180-10	BIPOLAR – Angled bipolar forceps 20 cm, TIP 1 mm	○
310-180-20	BIPOLAR – Angled bipolar forceps 20 cm, TIP 2 mm	○
310-182-10	BIPOLAR – Curved angled bipolar forceps 20 cm, TIP 1 mm	○
310-185-10	BIPOLAR – Curved angled bipolar forceps 20 cm, TIP 1 mm	○
310-510	BIPOLAR – Bipolar electrode 20 cm, straight	○
310-550	BIPOLAR – Bipolar electrode 20 cm, angled	○
310-590	BIPOLAR – Bipolar electrode 20 cm, angled type 2	○
330-134-20	MONOPOLAR – Monopolar forceps 20 cm, TIP 2 mm	○
330-160	MONOPOLAR – Monopolar scissors 18 cm	○
500500.L1	ELECTRODE – Straight fine wire electrode (5 pcs) 5 cm	○
500500.L1/L	ELECTRODE – Straight fine wire electrode (5 pcs) 10 cm	○

DIATERMO MB 120 T		
Code	Description	Quantity
500500.L11	Microsurgery needles (10 pcs)	○
500500.L2	ELECTRODE – Angled fine wire electrode (5 pcs) 5 cm	○
500500.L2/L	ELECTRODE – Angled fine wire electrode (5 pcs) 10 cm	○
500500.L3	ELECTRODE – Loop electrode Ø 4 mm (5 pcs) 5 cm	○
500500.L3/L	ELECTRODE – Loop electrode Ø 4 mm (5 pcs) 10 cm	○
500500.L4	ELECTRODE – Loop electrode Ø 8 mm (5 pcs) 5 cm	○
500500.L4/L	ELECTRODE – Loop electrode Ø 8 mm (5 pcs) 10 cm	○
500500.L5	ELECTRODE – Angled hook electrode (5 pcs) 5 cm	○
500500.L5/L	ELECTRODE – Angled hook electrode (5 pcs) 10 cm	○
500500.L6	ELECTRODE – Angled thick wire electrode (5 pcs) 5 cm	○
500500.L6/L	ELECTRODE – Angled thick wire electrode (5 pcs) 10 cm	○
500500.L7	ELECTRODE – Teardrop electrode (5 pcs) 5 cm	○
500500.L7/L	ELECTRODE – Teardrop electrode (5 pcs) 10 cm	○
500500.L8	ELECTRODE – Snare electrode (5 pcs) 5 cm	○
500500.L8/L	ELECTRODE – Snare electrode (5 pcs) 10 cm	○
500500.L9	ELECTRODE – Straight ball electrode Ø 3 mm (5 pcs) 5 cm	○
500500.L9/L	ELECTRODE – Straight ball electrode Ø 3 mm (5 pcs) 10 cm	○
500500.L10	ELECTRODE – Angled ball electrode Ø 3 mm (5 pcs) 5 cm	○
500500.L10/L	ELECTRODE – Angled ball electrode Ø 3 mm (5 pcs) 10 cm	○
6429A	NEUTRAL – Metal neutral electrode 240 x 160 mm	○
755VL	Disposable handpiece with buttons (F4797)	○
F7520	Electrode cleaning sponge 47 x 50 mm	○
F7915	Single-piece conductive rubber neutral electrode without cable	○
F7920	Disposable split neutral electrode (F7820)	○
F7930	Split conductive rubber neutral electrode without cable	○
TR003	3- cart	○
TR003W	Wide 3-tier cart	○
TR004	4-tier cart	○
TR005	5-tier cart	○
TR005W	Wide 5-tier cart	○

■/pcs = STANDARD

○ = OPTIONAL

- = NOT COMPATIBLE

ELECTROPHYSICAL PRINCIPLES

In surgical procedures, the traditional use of the cold-blade scalpel has been largely replaced by the electrosurgical unit, which offers the possibility of performing tissue cutting and coagulation procedures quickly, easily and effectively.

The electrosurgical unit is built on the basis of the principle of conversion of electrical energy into heat (Joule's principle) and consists of:

- a radio frequency sinusoidal oscillator (0.4 - 4MHz);
- a wave packet generator, with a packet repetition rate of 15 – 30 kHz;
- a mixer for transferring to the power amplifier block either the only waveform suitable for cutting, or the waveform only for the clot, or a signal obtained by a suitable mixing of the two;
- a power amplifier block capable of supplying the necessary power in terms of current and transmitting the amplified signal to the electrodes, by means of a transformer;
- a safety circuit for the return electrode, to detect any cable breaks and deactivate the radio frequency delivery;
- a suitably shaped active electrode (handpiece);
- a return (neutral) electrode that closes the circuit through the patient.

The electric current that passes through biological tissue can usually cause:

1. **Joule effect**
2. **Faradic Effect**
3. **Electrolyte effect**

1. Joule Effect

In the biological tissue, crossed by the electric current delivered by the electrosurgical unit, a heating (Joule effect) is produced, depending on the specific electrical resistance of the tissue, the current density, the time of application and which can lead to various cellular transformations.

$$Q = I^2 \times R \times T$$

The influence of the thermal effect (Joule effect) is achieved through:

- **Current intensity and output power**

- **Degree of modulation**

Parameters that can be interpreted from the waveform of the high-frequency current produced by the generator.

- **Electrode shape**

Pointed or rounded as required, it is very small in size; therefore, the current density on the surface of the tip [$A \cdot m^{-2}$] is very high. The thin-section electrodes create a high current density, a high temperature, favouring the cutting action. Those with a large surface area create a lower current density, a lower temperature, realizing a coagulation effect.

- **Active electrode status**

The thermal effects are related to the resistance of the human body to which the contact resistance of the electrode must be added. It is essential to keep the active electrodes perfectly clean so as not to have a reduction in effects.

- **Fabric characteristics**

Resistive characteristics vary in relation to biological tissues.

Biological tissue (in the range of 0.3 to 1 MHz)	Metals
Blood $0,16 \times 10^3 \Omega$	Silver $0,16 \times 10^{-5} \Omega$
Muscle, kidney, heart $0,2 \times 10^3 \Omega$	Brass $0,17 \times 10^{-5} \Omega$
Liver, spleen $0,3 \times 10^3 \Omega$	Gold $0,22 \times 10^{-5} \Omega$
Brain $0,7 \times 10^3 \Omega$	Aluminium $0,29 \times 10^{-5} \Omega$
Lung $1,0 \times 10^3 \Omega$	
Fat $3,3 \times 10^3 \Omega$	

(Example of specific resistances of organic material and metals)

Based on the temperature reached and depending on the pulse forms used, different techniques for the use of radio frequency current on the human body can be recognized:

- **Coagulation**

Temperatures of 60 to 70 °C in the area around the active electrode cause the intra-cellular fluid to slowly heat up, the water contained in the cell evaporates, and a clot action is obtained that stops bleeding.

- **Electrotomy (Cutting)**

Temperatures above 100 °C in the area surrounding the active electrode result in the vaporization of the intra-cellular fluid and the explosion of the cell. The vapor present around the electrode triggers an intercellular chain reaction in the direction in which the active electrode is handled, also transmitting the vaporization energy to the immediately surrounding tissues.

Electrotomy is not, therefore, a mechanical resection. If the temperature reaches 500 °C, tissue charring occurs with a cauterizing action.

- **Mixed currents**

They are obtained by combining the effects of coagulation and electrotomy. A reduction in bleeding occurs during a cutting procedure, or as a cut that develops a consistent layer of eschar.

The high frequencies used by the electrosurgical unit, however, do not allow the electromagnetic field to penetrate the matter and cause the current to pass through the conductor more on the outermost surface, decreasing exponentially and becoming negligible in the center of the conductor section. This effect, called the "skin effect", leads to a decrease in the cross-section useful for the passage of current, an increase in the electrical resistance of the material and becomes a significant problem in the neutral electrode. In fact, in this electrode the current density is very high (KA/m^2) at the edge, where the excessive increase in temperature due to the 'Joule effect' causes burns to the patient. It is therefore no coincidence that the burns to the patient, which occurred in surgery, have the shape of the edge of the neutral electrode. To reduce the risk of burns, the power output ($I^2 \cdot t$) must be appropriately dosed and the rules for applying the neutral electrode to the patient must be followed (see chapter *SAFETY*).

2. Faradic Effect

The pulsed electric current causes neuro-muscular stimulation, originating from the stimulation of the physiological process of ion exchange, responsible for the transmission of stimuli that cause muscle spasms and cardiac phenomena of extrasystole and ventricular fibrillation.

The effect of these stimuli is known as the pharadic effect and is expressed by:

$$R = I / \sqrt{F}$$

The physiological stimulus transmission system follows a boundary curve in which pulsed or low-frequency currents generate a stimulation pulse. With the high-frequency alternating current (above 200 kHz), used in the electrosurgical unit, there are no neuromuscular reactions (the change of polarity is so fast that it does not affect the patient in terms of neuro-muscular reactions), nor electrolyte damage to the body.

For this reason, all high frequency generating equipment for surgical use (electrosurgical units) work on basic frequencies above 300 kHz so as not to introduce electrical stimulation.

3. Electrolyte effect

The use of high-frequency currents reduces the electrolytic effect (ion separation) in the tissues, due to the very short period of unidirectional conduction of the current.

OPERATING TECHNIQUES

MONOPOLAR CUT

Monopolar cutting is the sectioning of biological tissue obtained by the passage of high-frequency and high-density current, concentrated by the tip of the active electrode. The high-frequency current applied to the tissue, through the tip of the active electrode, creates intense molecular heat in the cells that causes them to explode. The cutting effect is achieved by moving the electrode through the tissue destroying the cells one after the other. The movement of the electrode prevents the propagation of lateral heat in the tissue, thus limiting destruction to a single cell line. The best current for cutting is the pure sinusoidal without any modulation, this, in fact, cuts with great precision producing the minimum thermal effect, with little haemostasis. Since its effect can be precisely controlled, it can be used safely without damage to the bone. Good coagulation during cutting is one of the main benefits of using electrosurgery, so a current with a certain degree of modulation is desirable.

The following rules help the operator to achieve a good cut:

- keep the fabric moist but not wet;
- keep the electrode perpendicular to the tissue;
- activate the output circuit before making contact with the fabric;
- keep the electrode tip clean (the optional electrode cleaning sponges with code F7520 are used for this purpose);
- allow the fabric to cool before cutting again.

When the power output level is adequate, you expect to achieve:

- no resistance to electrode movement through the fabric;
- no variation in the colour of the cut surfaces;
- No residual tissue fibre on the electrode.

MONOPOLAR COAGULATION

When there is an increase in temperature, due to the heat generated by the Joule effect in the tissue, thermal coagulation takes place, i.e. the partial solidification of organic liquids and therefore the precipitation of colloidal substances. Fibrin is formed in the blood which, as it solidifies, obstructs the blood vessel.

To obtain coagulation with the electrosurgical unit, it is necessary to supply the active electrode with an intermittent current so that the amount of heat developed does not produce the explosion of the cells and therefore the cutting of the tissue, but only their heating so that the water contained escapes from the cell without destroying it. However, even with intermittent current, if the current intensity is too intense, the cutting effect occurs.

Active electrodes that are particularly suitable for coagulation are sphere-shaped electrodes, plates, or lanceolate electrodes used laterally.

Coagulation can be achieved by two different procedures:

- **Coagulation by drying**

It is obtained by powering the electrode with low voltages so that no sparks are generated (this ensures that the action obtained is of a pure clot and therefore any cutting effect is absent). The electrode is placed in direct

contact with the tissue and the amount of heat developed on contact dries it out.

Typically, coagulated cell surfaces act as an insulating layer, which prevents heat from subsequent current applications from penetrating too deeply.

The current normally used for coagulation is modulated. Depending on the percentage of modulation, there is precision of the cut, goodness of the haemostasis and degree of tissue destruction. A greater modulation of the current leads to a more jagged cut, to a greater depth of destroyed tissue, but to a more effective coagulation.

The following rules help the operator to achieve good coagulation:

- select a ball electrode or a thick wire;
- locate the bleeding vessel after wiping excess blood from the area;
- lightly touch the bleeding vessel before activating the electrode;
- stop activating the electrode as soon as the tissue whitens to avoid damaging it;
- keep the electrode tip clean (the optional electrode cleaning sponges with code F7520 are used for this purpose).

- **Coagulation with anatomical forceps by clamping**

The most frequently used coagulation technique is to block blood flow by clamping pressure between the end of the forceps.

After clamping the portion of tissue or blood vessel where the coagulation is located, the active electrode is placed in contact with the proximal metal part of the forceps. The activation of the high frequency must take place after this contact (clamp – active electrode) to avoid the faradic effect (triggering of an electric discharge that uses air as a conductor) which would cause electric shock, burns to the operator, etc.

BIPOLAR COAGULATION

Unlike the monopolar technique, with the bipolar technique the portion of tissue affected by the passage of current in high frequency is reduced. In this technique, bipolar clamps (of different sizes and shapes) are used, on the distal ends of which there are the active and neutral electrode. By tightening the tissue to be operated on between the ends of the clamp, the passage of high-frequency current will take place from one end to the other, using the part of the fabric to be treated as an electrical bridge.

Bipolar coagulation is the haemostasis of small blood vessels in body tissue between the two tips of the forceps. When the current density is reduced the effect is to dry the cell surface, without penetrating deeply, resulting in coagulation.

The bipolar technique is extremely safer because the direction of the high-frequency current is always determined and predictable and does not reserve unknowns and potential erroneous directions, and the powers used are much lower than those used in the monopolar technique. For these reasons, this technique is used especially in the most delicate surgeries, and it is therefore essential to keep the distal ends of the forceps clean during surgery, because they are subject to the accumulation of coagulated tissue, which limits the passage of current and favours gluing to the tissues.

The application of the neutral electrode (used compulsorily in the monopolar technique) is not necessary, although from a practical point of view it is always allowed to be applied to the patient during the initial preparation phase.

CONTRAINDICATIONS

The use of electrosurgery is contraindicated in patients:

- pacemaker carriers
- with stimulation electrodes
- with metallic prostheses
- with serious blood pressure imbalances
- with serious diseases of the nervous system
- with serious kidney failure
- in state of pregnancy.

In the context of electrical surgery, burns due to high frequency are the main causes of burns caused to the patient, but they are not the only ones involved. One can also get necroses by compression, allergic reactions to disinfectants, gas sparks or flammable liquids.

Some of the causes of burns are to be attributed to:

- insufficient medical equip training about all modalities to avoid or reduce the risks of burns by using HF electrosurgical units
- use of disinfectants with high alcohol content
- incorrect position of the patient during the electrosurgical operation
- contact between active electrode and the skin
- contact with liquid
- long application of HF currents
- incorrect application of the patient-plate.

To avoid or reduce the risks associated with the use of high frequency electrosurgery, it is necessary to respect the rules and safety measures illustrated in the following chapter.

SAFETY

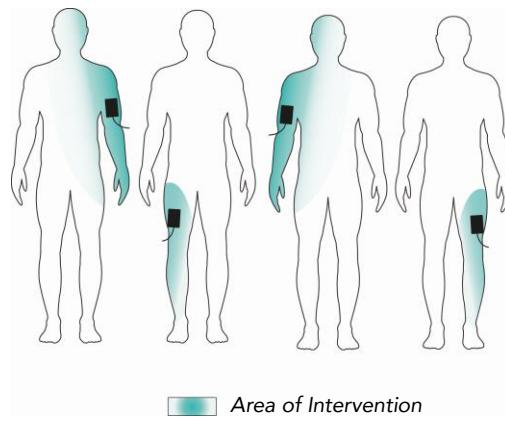
WARNING: Electrosurgery can be dangerous: Improper use of each of the elements of the electrosurgical system can cause serious burns to the patient. It is imperative that you carefully read and fully understand all instructions before attempting to use an active electrode. Neither the manufacturer nor any of the dealers can be held responsible for loss or damage caused to persons and equipment, directly or indirectly, due to improper use of the device and its accessories.

The accessories supplied with the unit have features compatible with this unit, may be incompatible with other electrosurgical units. The user must check, before connecting other accessories to this unit, that they have insulation characteristics compatible with those of this unit (see chapter *TECHNICAL SPECIFICATIONS*). The packaging of any sterile accessories should be checked for integrity before first use.

ATTENTION

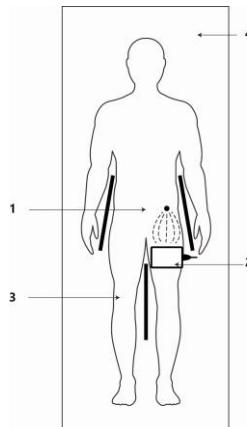
- **DO NOT USE** on patients with electronic implants such as cardiac pacemakers without consulting a qualified professional (e.g., a cardiologist). There is a potential risk of interference with the functioning of the electronic implant or damage to the implant itself.
- **DO NOT USE** in the presence of flammable anaesthetics or oxidizing gases (such as nitrous oxide (N₂O) and oxygen) or near volatile solvents (such as ether or alcohol) as explosions may occur.

- **DO NOT PLACE** instruments near or in contact with flammable materials (such as gauze or surgical drapes). Activated or heated instruments can cause fires.
- When not in use, store instruments in a clean, dry, and highly visible area away from direct patient contact. Inadvertent contact with the patient can result in burns.
- **INSPECT** instruments and cables for damage before each use, especially the insulation of laparoscopic/endoscopic instruments. This inspection can be carried out visually under magnification or with a high-voltage insulation testing device. Insulation failures can lead to burns or other injuries to the patient or the operator.
- The surface of the active electrode may remain sufficiently hot to cause burns even after RF current is deactivated.
- Due to concerns about the potential carcinogenic and infectious properties of electrocautery byproducts (such as tissue smoke plumes and aerosols), protective eyewear, filtration masks, and effective smoke evacuation equipment should be used in both open and laparoscopic procedures.
- Only connect adapters and accessories to the electrosurgical unit when the power is **OFF**. Failure to do so may result in patient or operating room personnel injury or electric shocks.
- If the device is powered with argon, warnings regarding gas embolisms must be included.
- If the instrument is reusable, a warning should be included that visual inspection alone may not be sufficient to ensure intact insulation.
- **DO NOT ACTIVATE** the instrument when it is not in contact with the target tissue, as this could cause injuries due to capacitive coupling with other surgical equipment.
- **ASPIRATE** fluids from the area before activating the instrument. Conductive fluids (e.g., blood or saline) in direct contact with or in proximity to an active


electrode can carry electrical current or heat away from the target tissues, potentially causing unintended patient burns.

- **DO NOT USE** with hybrid systems, i.e., a combination of metal and plastic, when using monopolar active components. This can result in burns at alternative sites due to capacitive coupling. Use only all-metal or all-plastic systems.
- Before increasing the intensity, verify the adhesion of the neutral electrode and its connections. Apparent low power or device malfunction at normal operating settings may indicate improper neutral electrode application or poor contact in its connections.
- This unit has a CQM system; please note that the loss of secure contact between the neutral electrode and the patient will not trigger an alarm unless a compatible monitoring neutral electrode (split neutral electrode) is used.
- **CAUTION:** Set the intensity to the lowest level necessary to achieve the desired effect.
- **CAUTION:** Keep the active electrodes clean. Accumulated eschar may reduce the tool's effectiveness. Do not activate the instrument during cleaning. Operating room personnel may be injured.
- Any serious incidents related to the device must be reported to LED SpA, via Selciatella n.40, 04011 Aprilia (LT) - Italy, and the competent authority: Ministero della salute – Direzione generale dei dispositivi medici e del servizio farmaceutico
Viale Giorgio Ribotta, 5 – Roma
E-mail: segr.dgfdm@sanita.it
Tel.: +39 06 5994 3199 / +39 06 5994 3207

PRECAUTIONS


The following precautions are intended to reduce the risk of accidental burns:

- The neutral electrode should be reliably connected over the entire area to the patient's body, preferably at the extremities, as close as possible to the point of intervention. Avoid attaching the neutral electrode to bony protrusions, prostheses, scar tissues, areas prone to fluid accumulation or that have a thick state of subcutaneous adipose tissue. The application area must be hair-free, dry and clean. Do not use alcohol to cleanse the skin. Except for use in veterinary medicine, the use of electrode gels is not permitted.

- Using single-use neutral electrodes, respect the expiration dates.
- When using multi-purpose electrodes, make sure that the fastening systems guarantee stability.
- When applying the neutral electrode, avoid the transverse path and prefer the vertical or diagonal path, especially if using a bipartite neutral electrode. This is to allow an even distribution of current on the surface of the neutral electrode and reduce the risk of burns to the patient.

- If it is not possible to apply the neutral electrode correctly, consider the bipolar technique instead of the monopolar technique if possible.
- The patient should not come into contact with metal parts that are grounded or have an appreciable grounding capacity (e.g. an operating table, supports, etc.). The use of an antistatic sheet is permitted for this purpose.
- Skin-to-skin contact (e.g. arm-to-trunk, leg-to-leg, breasts, etc.) should be avoided by inserting dry gauze. In addition, areas of the body subject to profuse sweating should be kept dry.

1. Active Electrode – 2. Neutral Electrode
3. Dry gauze – 4. Antistatic Fabric

- When the electrosurgical unit and a physiological monitoring device are used simultaneously on the same patient, all monitoring electrodes should be placed as far away from the surgical electrodes as possible. Needle monitoring electrodes are not allowed. In any case, monitoring systems incorporating high-frequency current-limiting devices are permitted.

- Surgical electrode cables should be positioned in such a way as to avoid contact with the patient or other conductors. Active electrodes, which are temporarily unused, must remain isolated from the patient.
- The use of bipolar techniques is allowed in the case of surgery on parts of the body with a relatively small cross-section, to avoid unwanted clotting.
- The set output power level should be as low as possible for the intended purposes.
- An evident low output level or incorrect operation of the electrosurgical unit, when it is set up for normal power delivery, may indicate a defective application of the neutral electrode or a bad contact in the connections of the same. Therefore, the application of the neutral electrode and its connections should be checked before selecting a higher power.
- The use of flammable anesthetics or oxidizing gases such as nitrous oxide (N_2O) and oxygen should be avoided in the case of chest or head surgery, unless it is possible to aspirate them. Non-flammable substances should be used for cleaning and disinfection wherever possible. Flammable substances used for cleaning, disinfection or as adhesive solvents should be allowed to evaporate before using the electrosurgical unit. There is a risk of stagnation of flammable solutions under the patient or in cavities such as the navel and vagina. Any fluid that settles in these areas should be removed before using the appliance. The danger of endogenous gases must be considered. Some materials such as cotton wool or gauze, when impregnated with oxygen, may ignite due to sparks produced by the appliance under normal conditions.
- There is a danger to patients with pacemakers (pacemakers) or pacing electrodes as interference with the action of the stimulator may occur or the stimulator itself may be damaged. In case of doubt, you should contact the Cardiology Department.

- Electrosurgical equipment emits high-frequency energy radiation without warning which may affect other medical equipment, unrelated electronics, telecommunications, navigation systems. To avoid interference, a distance of at least 1.5 meters must be placed between the electrosurgical equipment and other devices.
- The user should check the accessories regularly. In particular, electrode cables and any endoscopy accessories should be checked for damage.
- In order to connect accessories compatible with the characteristics of the equipment, the insulation characteristics of the accessories (to be requested from the manufacturers) must be compared with the characteristics of the unit supplied (see Technical Specifications).
- **Caution:** Failure of surgical equipment could result in an unintended increase in output power.

Note: Stimulation of the patient's muscles or nerves can be caused by low-frequency currents originating from an electrical spark between the electrodes and the patient's tissue. If neuromuscular stimulation occurs during surgery, take the following measures:

1. Suspend the intervention immediately.
2. Thoroughly inspect all connections to the generator to identify any problems or loose connections.
3. If the problem persists and cannot be resolved by checking the connections, the generator should be inspected by qualified personnel for necessary maintenance and troubleshooting.

INSTALLATION

- Electrical safety is ensured only when it is correctly connected to an efficient earthed power supply in accordance with current safety standards. This basic safety requirement should be checked and, if in doubt, the system should be thoroughly checked by qualified personnel. The manufacturer cannot be held responsible for possible damage caused by the lack of an efficient ground connection of the installation. Operation without protective ground connection is prohibited.
- Before connecting the equipment, make sure that the required voltage (indicated on the rear panel) corresponds to the available mains.
- In the event of incompatibility between the available power outlet and the power cord of the equipment, replace only with a suitable type. The use of adapters, multiple connections, or extension cables is not permitted. If their use is necessary, it is mandatory to use only single or multiple adapters that comply with current safety standards.
- Do not leave the appliance exposed to atmospheric agents (rain, sun, etc.). The device must be protected from the ingress of liquids.
- Do not leave the appliance inserted unnecessarily. Turn it off when not in use.
- The equipment is not suitable for use in explosive environments.
- The equipment must be intended only for the use for which it was specially designed. Any other use must be considered improper and dangerous. The manufacturer cannot be held responsible for possible damage due to improper, incorrect or unreasonable use.
- It is dangerous to modify or attempt to modify the characteristics of the equipment.

- Before carrying out any cleaning or maintenance operation, disconnect the appliance from the mains by removing the plug from the mains or turning off the main switch of the system.
- If the equipment breaks or malfunctions, switch it off. For repairs, refer only to an authorized service center and ask for the use of original spare parts. Failure to comply with the above regulations may risk the safety of the equipment and may be dangerous for the user.
- Do not reduce or eliminate the generator activation beep. A working activation signal can minimize or prevent injury to the patient or personnel in the event of accidental activation.
- The operation of the equipment must not be verified by emitting power between the active and neutral electrode or between the active electrode and metal parts.
- If necessary, use fume extraction means in the field of intervention.

WARNING: In operating room use, only dive-tight foot switches should be used (code 00304.00 watertight single foot pedal – code 00305.03 watertight double foot pedal board).

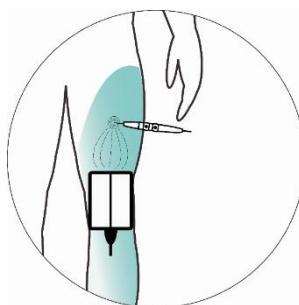
PATIENT SAFETY

During high frequency electrosurgery the patient behaves like an electrical conductor. A potential difference different from zero is established between the patient and the earth and therefore, if contact were made between the patient and electrically conductive objects (metal, damp or wet cloths and cloths, etc.), an electric current would be generated at the point of contact which could give rise to thermal necrosis. It is therefore permitted to carry out appropriate checks of the appliance and its accessories before use and to comply with all the necessary safety regulations.

CORRECT PATIENT POSITIONING

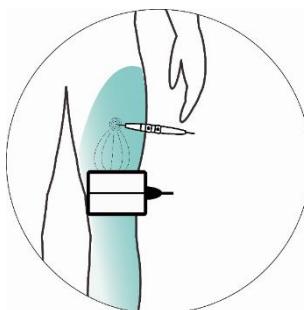
Avoid any intentional or accidental contact between the patient and earthed metal parts and make sure that:

- The patient is not in contact with metal parts (operating table, supports).
- Any tubes of respirators do not rest on the patient's body.
- On the operating table with ground connection, there are always coatings capable of discharging electrostatic charges.
- The patient is placed on a thick base fabric with insulating properties, which in turn is covered with a sufficient number of intermediate layers of covering sheets.
- The patient is not in contact with damp sheets or mattresses.
- Any secretions from the body and liquids applied for cleaning purposes or other types of liquids do not wet the dry sheets.
- There are no fluid residues below the patient.
- Any urinary excretions are eliminated through the use of catheters.
- Regions of the body characterized by more intense sweating, extremities in direct contact with the trunk of the body or skin-to-skin contact points are kept dry through the interposition of drapes (arm/trunk of the body, leg/leg, breasts, skin folds, etc.).
- All conductive and grounding brackets are properly insulated.
- Adjust the number of anaesthetics so that excessive sweating is avoided.


CORRECT APPLICATION OF THE NEUTRAL ELECTRODE

The use of the neutral electrode (or current leakage plate) is indispensable in the monopolar technique, as it allows the "return" of the cutting or clot current to the electrosurgical unit. There are two types of neutral electrode:

- **Monopolar Neutral Electrode** in which there is no control over the neutral-patient electrode contact.
- **Bipartite Neutral Electrode** in which the neutral-patient electrode is controlled.


It is vitally important to pay special attention to the accurate positioning of the neutral electrode in order to prevent burns and minimize risk to the patient. Useful information is provided below:

1. *Correct positioning*

The image on the side shows the correct positioning of the bipartite neutral electrode. The patient plate must be placed in a perpendicular position with respect to the operating field. Avoid placing it in a transverse direction and, instead, favour a vertical or diagonal orientation. This promotes an even distribution of current on the surface of the neutral electrode, minimizing the risk of burns to the patient.

2. *Incorrect positioning*

The image on the side illustrates the incorrect positioning of the bipartite neutral electrode. The parallel arrangement between the patient plate and the operating field causes an uneven distribution of current on the two surfaces of the neutral electrode, leading to possible alarm signals on the unit and preventing the device from being activated correctly.

For both single-part and bipartite electrodes, clean and remove any residues of foreign substances from its surface before proceeding with the placement of the neutral electrode.

Do not apply the neutral electrode to scars, bony protrusions, or anatomical parts where prosthetic implants or monitoring electrodes are present. Instead, apply it to well-supplied tissues, such as muscles and near the operative site.

If you are using a disposable neutral electrode, respect the expiry dates, if you are using a disposable neutral electrode, make sure that the fastening systems guarantee stability.

It is of paramount importance that the neutral electrode is firmly applied over its entire surface to avoid burns. When a neutral electrode partially detaches from the patient, the density of the current flow in the part of the electrode that is still applied is increased. Because the density of the current flow below the neutral electrode is inhomogeneous, uneven heating occurs, especially at the edges of the neutral electrode.

If the electrode were placed at a region under pressure during surgery, the compressive load would result in a reduction in skin perfusion. In this way, the heat developed can only be partially removed, so that the risk of burns increases. In addition, there is an increased risk of pressure point formation (decubitus) due to the heating that occurs. This increase in temperature causes a greater need for oxygen (O_2) and energy in the affected area, contributing to the possible development of areas of pressure on the body.

ELECTROSURGERY AD HF IN LAPAROSCOPY

Laparoscopic, or minimally invasive, surgery has revolutionized the landscape of surgical interventions, bringing significant benefits in terms of recovery and healing times for the patient. In this context, the use of high-frequency (HF) monopolar surgery is widely used due to its flexibility in performing mixed cuts, coagulations and cuts that combine both functions. However, this mode of operation carries risks for the patient, especially the risk of burns.

Burn risks can be heightened by various factors, including limited field of view, inadequate maintenance of laparoscopic equipment, interference on the monitor, insufficient surgeon preparation or distractions, excessive smoke development, inadequate insulation, capacitive currents, and accidental contact of the active electrode tip with surrounding tissue. These factors can contribute to the increased risk of burns, internal injuries, tissue necrosis and organ perforation.

In addition, the very environment of the surgery, in which the active electrode is in close proximity to conductive instruments and body tissue, can facilitate the transmission of electrical currents to areas not visible through:

- **Direct coupling**, which occurs when the active electrode comes into contact with another metal instrument, causing electrical current to be transmitted and increasing the risk of burns to surrounding tissue, such as the intestines or other organs;
- **Lack of insulation**, in this case the insulation of the electrode can be compromised by the use of excessive voltage, improper use or mechanical breakage of the electrode rod. This can happen during a surgical procedure or during the cleaning and sterilization phases of the instruments. A non-visible insulation breakdown, when the electrode is activated, represents a

danger of unpredictable, therefore more insidious, burns. Curiously, a small break in insulation is more dangerous than a large one, since the current is more concentrated and therefore more susceptible to causing burns;

- **Capacitive coupling**, which occurs when electrical current is induced by the active electrode on conductive materials, even if the insulation is intact. During high frequency electrosurgery procedures, the rapid change in the electric field around the active electrode is only partially hindered by the insulation, generating ionic currents that, when in contact with the tissue, cause enough heating to cause burns.

It is crucial to address these risks with the utmost care and to take preventive measures to ensure patient safety when using high-frequency surgery in a laparoscopic setting.

To minimize the risks of burns during laparoscopic high frequency electrosurgery procedures, the following preventive measures are proposed:

- **Comprehensive staff training:** Ensure thorough and thorough training for medical and healthcare personnel participating in electrosurgery procedures. A comprehensive knowledge of procedures, risks, and preventive measures is essential.
- **Accurate inspection of surgical instruments:** Perform a detailed visual examination of surgical instrumentation, including the active electrode and laparoscope. This can help identify any defects or wear that could increase the risk of burns.
- **Use of disposable electrodes:** Although disposable electrodes may have thinner insulation that does not reduce the occurrence of a breakage or capacitive coupling, their use is wear-free.

- **Ban on hybrid material cannulas:** Avoid using cannulas made of hybrid materials, such as plastic and metal, as they can increase the risk of direct coupling and capacitive coupling.
- **Adoption of the bipolar technique:** The bipolar technique is less versatile than the monopolar technique, but it is considered safer as heat injuries are localized and occur only with prolonged current application.

Ultimately, it is evident that burns are a real concern in high-frequency electrosurgery procedures. However, with a thorough understanding of the possible causes and thorough preparation of the medical team, it is possible to limit their incidence and effectively manage potentially risky situations.

COMMISSIONING

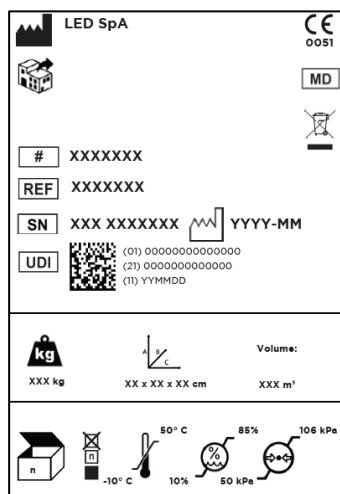
- Inspect the equipment for any damage caused by transportation. Claims for any damage will be accepted only if notified immediately to the carrier, drawing up a note of the damage found, to be presented to LED SpA or its seller. In the event of returning the equipment to LED SpA or to the seller, it is necessary to use the original packaging of the product or packaging that guarantees equivalent transport safety.
- Connect the power cord to a mains outlet with a good earth connection.

OPERATION OF THE EQUIPMENT WITHOUT AN EARTH CONNECTION IS PROHIBITED.

- The equipment must be installed on a flat surface that is at least the same size as the base of the equipment. At least 25 cm of space must be left around the equipment.
- Connect the mains cable to the power outlet located on the rear panel of the unit.
- If necessary, connect the bonding point on the rear of the unit to any bonding socket in the system.

- Connect the single foot pedal or the double foot pedal set (optional) to the connector on the front of the equipment.
- Connect the handpiece with two buttons, in the case of use of handpieces without buttons the same must be connected in the "ACTIVE" section of the connector.
- In case of use of bipolar pliers, the special optional adapter (REF 00498.00) must be used.
- Operate the equipment only in a dry environment. Any condensation that occurs must be evaporated before the equipment is operated. Do not exceed room temperature or permitted humidity.
- Environmental conditions:
 - Temperature: 10°C to 40°C
 - Relative humidity: 30% to 75%
 - Atmospheric pressure: 70 kPa to 106 kPa
- Before attempting to use the equipment, it is necessary to connect the neutral electrode connection cable and the neutral electrode on it. The neutral electrode must be correctly attached to the patient (see chapter *SAFETY*). Single-party and two-part neutral electrodes can be used. With the unit turned on, if the impedance value read by the equipment is acceptable, the OC indicator light will stop flashing.
- When the equipment is switched on using the switch on the back of the power supply module, after checking the internal parameters, the equipment will be set with the function and power levels used at the last start-up (the levels will be 00 when the power is switched on for the first time).

DESCRIPTION OF SYMBOLS


In accordance with the international standards ISO 15223-1:2021 "Medical devices - Symbols to be used in the information to be provided by the manufacturer" and ISO 780:2015 "Packaging - Packaging for distribution - Graphic symbols for handling and storage of packaging", all symbols on device labels and secondary packaging (cardboard box) must comply with the applicable regulatory requirements.

Nº	SYMBOL	DESCRIPTION
1		Floating neutral electrode: not grounded at either high or low frequencies.
2		Class CF equipment protected against shock from the use of the defibrillator.
3		Non-ionizing radiation generating equipment.
4		Follow the instructions for use.
5		CE Mark (2017/745/EU) + Notified Body Number 0051 = IMQ Italy
6		The product should not be disposed of in municipal waste containers but should be disposed of with a separate collection.
7		Manufacturer.
8		Serial number.
9		Date of manufacture.
10		Unique device identification.
11		Medical device.
12		Distributor.
13		No maintenance by the user.

Nº	SYMBOL	DESCRIPTION
14		Catalog number (Code).
15		Temperature limits.
16		Humidity limits.
17		Atmospheric pressure limits.
18		High side.
19		FRAGILE – Handle with care.
20		Keep away from sunlight.
21		Protect from moisture.
22		Maximum number of stackable pieces.
23		Weight.
24		Dimensions.
25		Number of pieces.
26		Recycle.
27		Model/Trade Name.
28		Degree of protection against the ingress of water and dust.
29		Fuse.
30		Distribution packaging must not be knocked over or tipped over.

PACKAGING LABEL

With reference to ISO 15223-1:2021 "Medical devices — Symbols for use with medical devices, labels, labeling and information to be provided" and ISO 780:2015 "Packaging — Packaging for distribution — Graphic symbols for handling and storage of packages" the following information is shown on the packaging label of the unit on the packaging:

ISO 15223-1 (5.1.1) - **MANUFACTURER**

ISO 15223-1 (5.1.9) - **DISTRIBUTOR**

ISO 15223-1 (5.1.10) - **MODEL NUMBER**

ISO 15223-1 (5.7.10) - **UNIQUE DEVICE IDENTIFIER**

ISO 15223-1 (5.1.6) - **CATALOGUE NUMBER**

ISO 15223-1 (5.1.7) - **SERIAL NUMBER**

ISO 15223-1 (5.1.3) - **DATE OF MANUFACTURE**

BOX WEIGHT

BOX DIMENSIONS

BOX VOLUME

ISO 7000 (No. 2403) - **STACKING LIMIT BY NUMBER**

EU REGULATION 2017/745 (MDR) - **CE MARK WITH**

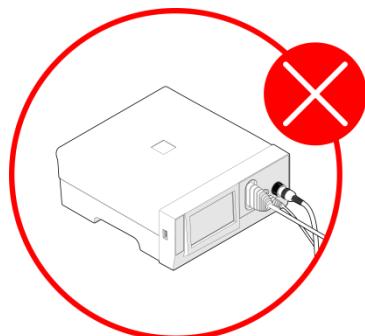
NOTIFIED BODY NUMBER

ISO 15223-1 (5.7.7) - **MD (MEDICAL DEVICE)**

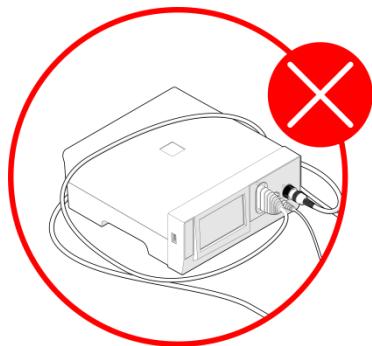
DIRECTIVE 2012/19/EU - **WEEE PRODUCT**

ISO 15223-1 (5.3.7) - **TEMPERATURE LIMIT**

ISO 15223-1 (5.3.8) - **HUMIDITY LIMIT**

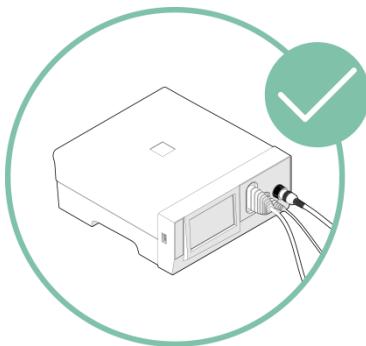

ISO 15223-1 (5.3.9) - **ATMOSPHERIC PRESSURE LIMITATION**

CORRECT CONNECTION OF ACCESSORIES AND/OR COMPONENTS


To ensure the proper functioning, safety, and durability of the medical device, it is crucial to position the accessories and/or components appropriately. Incorrect placement may impair the efficiency of the device or damage the equipment. Here is useful information about this:

1. Incorrect positioning

The images below show two examples of incorrect cable placement: **braided and/or coiled cables** and **braided and/or coiled cables on top of the device**



In the first case, cables that are twisted and/or coiled together tend to cause electromagnetic interference that can compromise the quality of the signal, interfering with the accuracy and effectiveness of the device. In addition, the continuous friction and tension created by the braid increase the wear and tear of the protective sheath, with the risk of malfunction.

In the second case, the braided and/or coiled cables on top of the device experience excessive mechanical pressure that can cause tension points and accelerate wear, resulting in structural damage. In addition, coiling tends to retain heat, reducing the efficiency and flexibility of cables, making them more vulnerable to damage in the long term.

2. Correct positioning

The image on the side shows the correct positioning of the cables. The correct arrangement of the same requires that they are positioned in parallel and well separated from each other. This configuration minimizes the risk of electromagnetic interference and prevents cables from being damaged due to friction or overlapping. Cables arranged in parallel allow for an orderly flow that facilitates maintenance and quick identification of any problems. In addition, a tidy layout helps to keep the work area safer and free from possible obstacles.

USING THE ACCESSORIES

Using for the **MONOPOLAR TECHNIQUE**:

A handpiece with two buttons without foot pedal: press the yellow button on the handpiece to deliver the cutting current (the choice between CUT and BLEND must be made by pressing the corresponding button on the device) or the blue button on the handpiece to deliver the coagulation current (the choice between FORCED COAG, SOFT COAG and BIPOLAR must be made by pressing the corresponding button on the device).

A handpiece with two buttons and a single foot pedal: use the selection buttons on the device to set between CUT or BLEND cutting and FORCED COAG, SOFT COAG or BIPOLAR coagulation, preselect the cutting function selected on the device using the yellow button on the handpiece or preselect the coagulation function selected on the device using the blue button on the handpiece. The emission is via a pedal.

A handpiece with two buttons and the double foot pedal (optional): press the yellow foot pedal or the yellow button on the handpiece to select and deliver the cutting current (the choice between CUT and BLEND must be made by pressing the corresponding key on the apparatus) or the blue foot pedal or the blue button on the handpiece to select and deliver the

coagulation current (the choice between FORCED COAG, SOFT COAG and BIPOLAR must be carried out by pressing the corresponding button on the device).

A handpiece without buttons (optional) and single foot pedal: connect the handpiece on the bushing indicated ACTIVE and select the CUT or BLEND cutting current or the FORCED COAG, SOFT COAG or BIPOLAR coagulation current and to deliver the desired current press the pedal.

A handpiece without buttons (optional) and double foot pedal (optional): connect the handpiece on the bushing indicated ACTIVE and press the yellow foot pedal to select and deliver the cutting current (the choice between CUT and BLEND must be made by pressing the corresponding button on the device) or the blue foot pedal to select and deliver the coagulation current (the choice between FORCED COAG, SOFT COAG and BIPOLAR must be carried out by pressing the corresponding button on the device).

Using for the **BIPOLAR TECHNIQUE**:

A bipolar clamp (optional) and single foot pedal: Connect the optional adapter (REF 00498.00). The equipment is arranged on the BIPOLAR function only. Deliver the current by pressing the foot pedal. To

avoid damaging the caliper, do not short-circuit the tips.

A bipolar clamp (optional) and double foot pedal (optional): Connect the optional adapter (REF 00498.00). The equipment is arranged on the BIPOLAR function only. Deliver the current by pressing the pedal associated with coagulation (blue). To avoid damaging the caliper, do not short-circuit the tips.

NOTE: A number of optional accessories are required to operate the unit in bipolar technology, in particular:

1. Adapter for
Connection
bipolar

2. Connection cable
for bipolar clamps

3. Bipolar accessory
(ex: pliers)

FRONT PANEL

- (1) Display Touchscreen
- (2) Handpiece connector
- (3) Neutral electrode connector
- (4) Pedal connector
- (5) Indicator lights (coagulation blue – cut yellow – stand-by mode)
- (6) USB port

OPERATING MODES

CONTROL AND IGNITION

The unit is operated directly via the icons displayed on the device's touchscreen. To confirm a choice, simply tap the icon directly.

Once the electrosurgical unit is turned on, the specific software begins to load on the screen. The progress of the software application process is shown via the filling of the bar at the bottom of the screen.

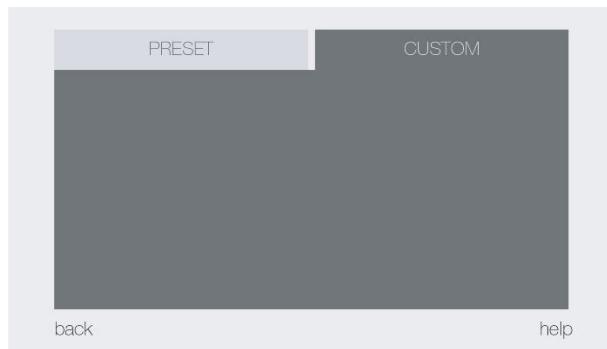
When this process is complete, you will see the Home screen:

On the Home screen, you can select and interact with the following options:

- Programs
- Surgery
- Settings
- Update (Updating the software via the USB port).

The "Info" option allows you to view the software versions that are currently installed. By pressing the "Help" button, you can access an informative summary that is useful for correctly interpreting the indications on the display.

PROGRAMS


Selecting the "Programs" option on the home screen will open two distinct pages:

1. **Presets:** This section will show the default programs that have already been configured and stored in the system. They represent standard settings for a variety of common surgical procedures.

Simply click "Start Program" to activate the preset program and make it ready to use.

2. **Custom:** This page will display programs that have been created and customized by you or your surgeon. These programs reflect the specific settings that the user has configured to address particular needs or unique procedures.

At first, the screen will appear blank. For instructions on how to create a custom program, please refer to the next paragraph ("Programs Section").

Distinguishing between these two pages allows caregivers to easily access a range of predefined or customized settings, based on the specific needs of the surgery. This gives you flexibility in selecting settings depending on the context.

In addition, by using the "Help" button, you can get information about the features of the selected program. To return to the home page, simply select the "Back" option.

SURGERY

By selecting the "Surgery" option on the home page, the following screen will be displayed:

Through which it is possible to distinguish different sections:

- (A) Cutting Section
- (B) Coagulation Section
- (C) Section for Adding New Programs
- (D) Home icon
- (E) Programs Section
- (F) Neutral electrode circuit impedance indicator

Each of these options allows you to adjust various parameters, which will have the option to be saved as a new custom program.

PREPARATION OF THE CURRENTS THAT CAN BE SUPPLIED

The currents that can be delivered for the various surgical operations can be set using the buttons to:

CUT CURRENT

The best current for cutting is the pure sine wave without modulation, i.e. with 100% duty-cycle.

BLEND CURRENT

The BLEND blended current is suitable for coagulated cutting when deep coagulation associated with cutting is desired. This results in a current suitable for coagulated shear in the absence of eschar and carbonization.

MICRO CUT

The current bipolar accessory supplied has a low voltage for a more controlled and precise cut. The function is suitable for microsurgery.

SURFACE COAGULATION CURRENT (FORCED COAG)

The FORCED COAG modulated current is characterized by good surface coagulation properties involving at the same time probable production of eschar and partial tissue carbonization. The advantage of this type of coagulation lies in the speed with which the effect is obtained.

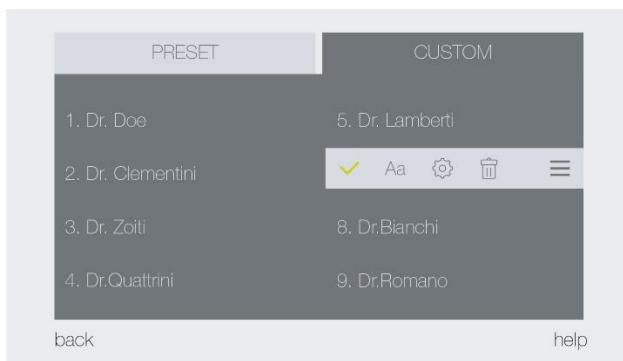
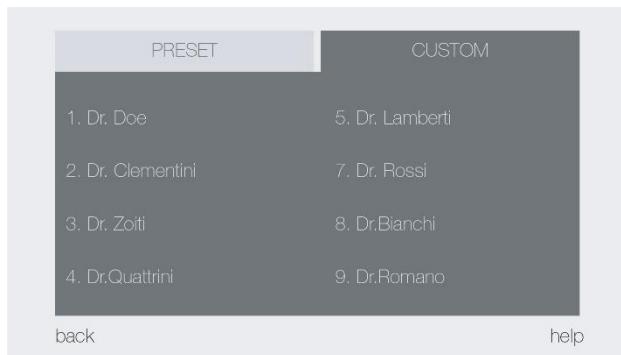
DEEP COAGULATION CURRENT (SOFT COAG)

The low voltage and low modulation current SOFT COAG is suitable for coagulation of deep layers of the tissue in which coagulation of cellular albumin is obtained in the absence of carbonization and without the production of eschar. The coagulation process is slower in this case than in FORCED coagulation.

BIPOLAR COAGULATION CURRENT (MICRO COAG)

The current delivered in this mode is pure sinusoidal at low voltage and suitable for coagulation without carbonization, both monopolar and bipolar. The use of the bipolar clamp is only permitted with this current. To allow the connection of the clamp cable, the use of an optional adapter (REF 00498.00) is required, which prevents any other type of current.

PROGRAMS SECTION



On the "Surgery" screen, you can add a custom program or view the programs present.

To create a new program, follow these steps:

- Set the desired values on the "Surgery" screen;
- Press on "+" and choose the name to be assigned, ending the process by clicking on "enter";

The new custom programs can be viewed in the "Programs" section.

— Through the icon representing three lines, you can perform different actions on the custom program:

 Aa Rename it.

 Edit it

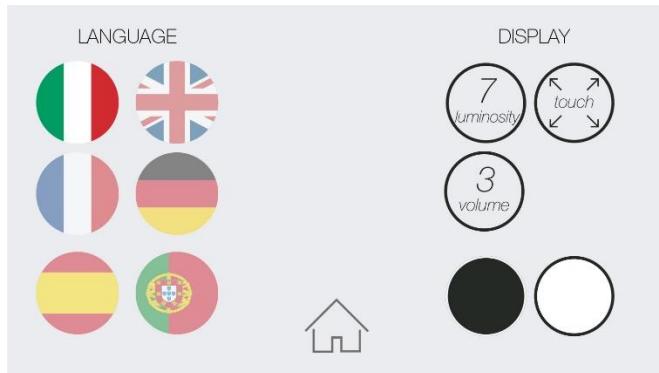
 Delete it.

NEUTRAL ELECTRODE CONTROL

The neutral electrode circuit is continuously monitored by a special circuit that checks, only when bipartite neutral electrodes are used, that the loss of contact between the patient's reference plate or the variation in the conductivity characteristics of the neutral electrode may cause a reduction in the conductivity of the circuit and therefore an increased risk of burns for the patient.

In order to reduce noise pollution, the audible alarm only occurs if the discharge pedal is held down.

It is important to note that when using single-section neutral electrodes (single part) the circuit only controls the connection of the neutral electrode with the unit; Therefore, it is critical to ensure that the entire surface of the neutral electrode is applied correctly and securely to the patient.


DISPENSING SCREEN

In the dispensing state, the function with its level will appear on the screen. This screen remains for a few seconds, during which you can adjust, with + and -, the output level.

SETTINGS

Starting from the home page and choosing the "Settings" option, the following screen will appear:

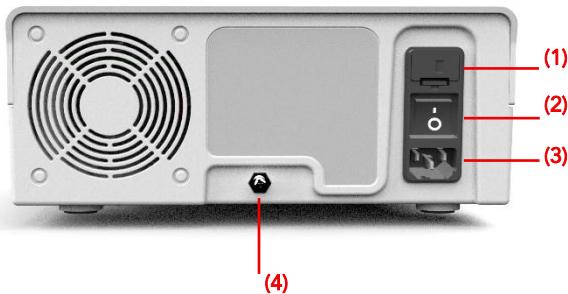
Through which it will be possible to view two sections:

- Language;
- Display, through which you can change the brightness, touch sensitivity, volume and black or white display.

UPDATES

Starting from the home page and choosing the "*Update*" option, it will be possible to update:

- Software,
- Images,
- Protocols.


To perform updates, you must connect a device that can be paired with the USB connector and contains the compatible file of the software, images, protocols, or firmware to be updated.

Follow these steps:

1. Insert the compatible device into the USB connector of the equipment.
2. On the screen, select the corresponding option from "Software," "Images," or "Protocols."
3. Afterward, confirm your selection via the popup that will appear.
4. Follow the on-screen instructions to complete the update process.
5. Once the update is complete, you can select the "Home" or "Back" option to exit the procedure and return to the home screen.

It is crucial to follow the on-screen instructions carefully throughout the entire process to ensure a successful and secure update.

REAR PANEL

- (1) Fuse holder / Voltage selector switch
- (2) Power switch
- (3) Power socket
- (4) Equipotential Bonding

EQUIPMENT POWER MODULE AND VOLTAGE SELECTOR SWITCH

The equipment power supply module is the power supply connection point for the internal electronics of the equipment. The aforementioned power module incorporates the power connector and line fuses. The voltage selector switch is located inside the power supply module.

WARNING: Before switching on the equipment, the operator should ensure that the mains voltage indicated in the voltage selector corresponds to the voltage to which it is connected and that fuses appropriate for the selected voltage have been inserted.

POWER SWITCH

The mechanical power switch is used to switch on the power supply to the equipment. To turn on the power to the equipment, press the switch in direction 1. When the power is on, the front panel is illuminated. Pressing the switch in direction 0 will disconnect the power supply, which allows the mechanical switch to be used as an emergency switch in the event of a fault.

TECHNICAL FEATURES

Tol.	Description	DIATERMO MB 120 T
± 0%	Selectable minimum power	0
-	Power step	1
-	Digital power display	•
±20%	Maximum CUT power (W)	120 → 250Ω
± 20%	Maximum BLEND power (W)	90 → 200Ω
±20%	Maximum MICRO CUT power (W)	70 → 100Ω
± 20%	Maximum FORCED COAG power (W)	80 → 150Ω
± 20%	Maximum SOFT COAG power (W)	60 → 100Ω
± 20%	Maximum MICRO COAG power (W)	40 → 100Ω
± 5%	CUT modulation level	Pure 100%
± 5%	BLEND modulation level	Mod. 50%
± 5%	MICRO CUT modulation level	Pure 100%
± 5%	FORCED COAG modulation level	Mod. 30%
± 5%	SOFT COAG modulation level	Mod. 90%
± 5%	MICRO COAG modulation level	Pure 100%
± 0.3	CUT crest factor	1.4
± 0.3	BLEND crest factor	2.0
± 0.3	MICRO CUT crest factor	1.4
± 0.3	FORCED COAG crest factor	2.5
± 0.3	SOFT COAG crest factor	1.5
± 0.3	MICRO COAG crest factor	1.4
± 10%	Operating frequency	600 kHz
± 20%	Maximum CUT voltage (Vpp on 5.2 kΩ)	800
± 20%	Maximum BLEND voltage (Vpp on 5.2 kΩ)	810
± 20%	Maximum MICRO CUT voltage (Vpp on 5.2 kΩ)	810
± 20%	Maximum FORCED COAG voltage (Vpp on 5.2 kΩ)	840

Tol.	Description	DIATERMO MB 120 T
± 20%	Maximum SOFT COAG voltage (Vpp on 5.2 kΩ)	750
± 20%	Maximum MICRO COAG voltage (Vpp on 5.2 kΩ)	690
± 0.5	Weight	5 kg
± 10	Dimensions	115x257x276mm
± 5%	Power supply voltage (Vac)	100-240
± 1%	Mains frequency (Hz)	50-60
-	Protection fuses	2x T4A
± 10%	Maximum power consumption (VA)	350
± 10%	Maximum current consumption (A) at 230 Vac	1.5
± 10%	Maximum current consumption (A) at 115 Vac	3
± 5	Adjustable audible signal in 5 steps (from 55 to 75 dBA)	●
-	Fault self-diagnostics	●
-	Output power accuracy control	●
-	Capability to connect single-piece and split electrodes	●
-	Storage of last used settings	●
-	Electrical classification (EN 60601-1)	Class I Applied Part CF
-	MDR classification 2017/745/EU	II b
-	Protection class (EN 60529)	IP32
-	EN 55011 (CISPR 11) classification (Group/Class)	2 / A
-	Neutral electrode	F
-	Duty cycle (on / off) in seconds	10 / 30
-	Footswitch / manual activation type	●
-	Defibrillator protection	●
-	Equipotential terminal	●
-	ABS enclosure	●

● = PRESENT

- = NOT PRESENT

HARDWARE REQUIREMENTS

Microcontroller	ARM Cortex M4
Clock Frequency	200 MHz
Flash	2048 KB
Ram	512 KB
SDRAM DDR2	512 MB
Nand Flash	1 Gb
Peripherals	UART, I2C, SPI, Watch-dog timer, USB2.0
Visual	4.3" touchscreen display

MAINTENANCE

GENERAL

There are no user adjustable parts inside the equipment for calibration or service. The equipment enclosure must not be opened – the warranty is voided by any unauthorized tampering with the unit. In the event of a need for repair or adjustment, the entire equipment should be sent to the LED SpA service center, together with a description of the fault. User maintenance consists mainly of cleaning and sterilizing the accessories and checking the equipment before each use. The execution of functional and safety checks to verify the parameters is entrusted to specialized technical personnel.

CLEANING THE CONTAINER

Turn off the equipment completely and disconnect the mains before any cleaning. Wipe the outside of the container with a damp cloth. Do not use any solvent or chemical components; A light, non-abrasive detergent may be used.

CLEANING AND STERILIZATION OF ACCESSORIES

If non-sterile disposable accessories are used, the instructions for use (IFU) provided by the manufacturer of each sterilization method accessory should be strictly followed and disposed of according to the regulations currently in force. When using reusable accessories, the maximum number of cycles and sterilization method indicated in the instructions for use provided by the manufacturer of each accessory must be observed.

TROUBLESHOOTING GUIDE

In the event of a problem, you must first check that you have correctly installed and prepared the accessories. The error code generated is shown on the display.

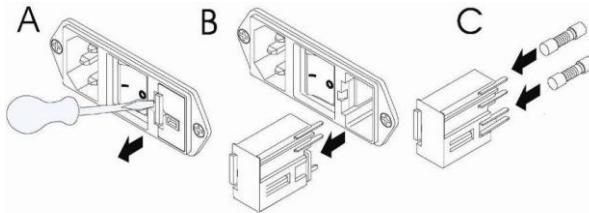
Problem	Probable cause	Solution
The equipment does not turn on	No or interruption of mains power	Check that the power cord is properly connected. Check the condition of the fuses and, if necessary, replace them with suitable fuses.
Neutral electrode circuit alarm always on	Interruption or poor contact of the neutral electrode circuit	Check the cable connection to the neutral electrode. If using bipartite neutral electrodes, check that they are correctly positioned on the patient. Replace the electrode connection cable if defective.
The unit does not respond to the actuation command	Handpiece or pedal failure Incorrect connection of the handpiece or foot pedal	Check that the handpiece and/or foot pedal is correctly connected. Replace the handpiece and/or foot pedal if faulty.
Error Code 001	Active dispensing controls during power-up	Unplug the handpiece and/or foot pedal and turn the unit back on.
Error Code 002	Overheating the unit	Wait for the indication to turn off before resuming use of the equipment.
Error Code 003	Equipment code not stored	Contact Technical Assistance.
Error Code 004	DAC not verified	Contact Technical Assistance.
Error Code 005	Error in the reference voltage	Check the supply voltage. Contact Technical Assistance.
Error Code 011	Incorrect insertion of the handpiece into the	Insert the handpiece into the bushing correctly.

Problem	Probable cause	Solution
	bushing	Check the cleanliness and integrity of the contacts. Replace the handpiece if the problem persists.

REPAIRS

High-frequency cables or electrode handpieces cannot be repaired. Always replace a defective part with a new one.

REPLACING THE FUSES


Before replacing the fuses, disconnect the equipment from the power supply.

To replace the fuses, use type 5x20 fuses from T4A (time-delayed) and proceed as follows:

(A-B) Use a small screwdriver to remove the fuse boxes from the power supply module.

(C) Insert the fuses following this reference:

Voltage 100-240 V Time Delay Fuses 2xT4A, 250V / 5 x 20 mm

CHECKING THE EQUIPMENT BEFORE USE

Whenever the use of the equipment is planned, a check of the main safety conditions must be implemented, considering at least the following:

- Check the integrity of the cables, connections, any damage to the insulation of the cables themselves.
- Make sure the equipment is properly grounded.
- Make sure that all accessories that are to be used are available and sterilized.
- With the neutral electrode control circuit closed by dispensing the CUT and COAG function, check that the acoustic/light emission indications are working correctly.

CONTROL AND MEASUREMENT OF SAFETY FUNCTIONS

Checks and measurements should be carried out periodically (at least once a year) by the Bioengineering Service or other qualified personnel.

- Check the condition of cables and power connectors.
- Visual inspection of mechanical guards and protection against the hazards of spillage, dripping, moisture, liquid penetration, cleaning, sterilization and disinfection.
- Checking the data on the rating plate of the equipment.
- Checking the availability of the instruction booklet.
- Control of high-frequency output actuators.
- Measurement of conductivity resistance to earth.
- Measurement of high-frequency leakage current.
- Control of neuromuscular stimulation.
- Checking the accuracy of the output power.

DIAGRAMS

DIATERMO MB 120 T

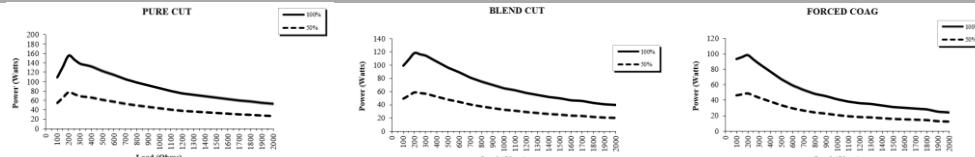


Diagram of maximum and medium power on variable load 100-2000Ω

CUT

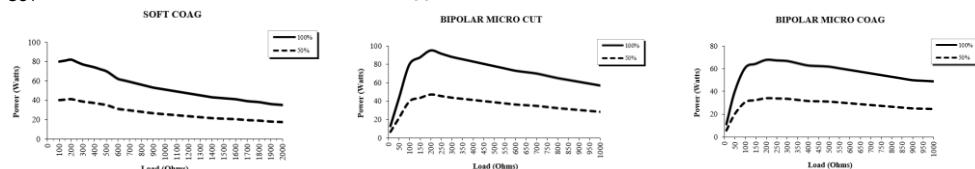
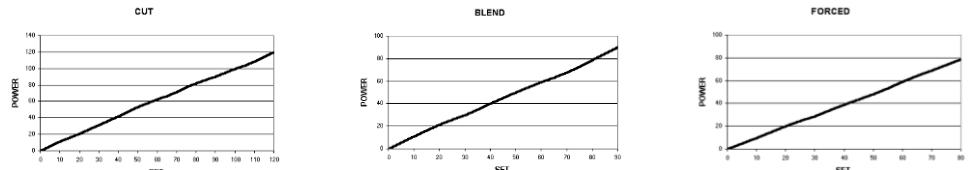
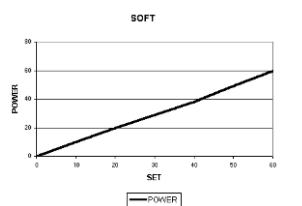
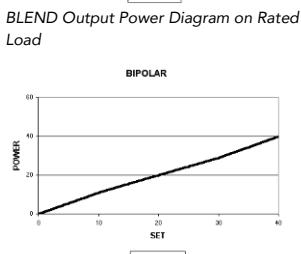
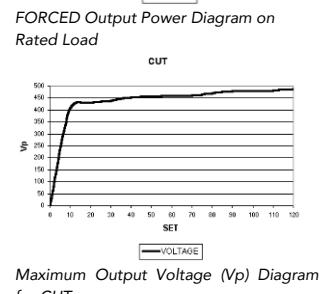
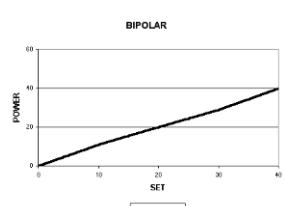
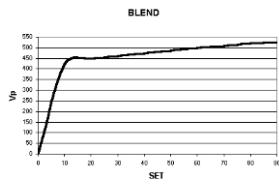
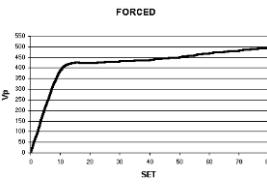




Diagram of maximum and medium power on variable load 100-2000Ω


SOFT COAG

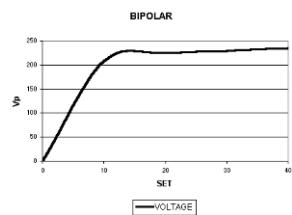


CUT Output Power Diagram on Rated Load


SOFT Output Power Diagram on Rated Load


BIPOLAR Output Power Diagram on Rated Load


Maximum Output Voltage (Vp) Diagram for CUT

DIATERMO MB 120 T


Maximum Output Voltage (Vp) Diagram for BLEND

Maximum Output Voltage (Vp) Diagram for FORCED

Maximum Output Voltage (Vp) Diagram for SOFT

Maximum Output Voltage (Vp) Diagram for BIPOLAR

Information on the reduction of hazardous substances in electrical and electronic equipment, as well as on waste disposal.

At the end of its life, this product must not be disposed of as municipal waste, it must be collected separately.

If the waste is disposed of inappropriately, it is possible that some parts of the product (e.g. any accumulators) may have potentially negative effects on the environment and human health.

The symbol on the side (crossed-out wheeled waste bin) indicates that the product should not be disposed of in municipal waste containers but should be disposed of separately.

Penalties may apply for the illegal disposal of this product.

Official Dealer

GIMA SPA

Via Marconi 1 - 20060 Gessate (MI) - ITALY
gima@gimaitaly.com - export@gimaitaly.com
Tel +39 02 9538541 Fax +39 02 95381167
www.gimaitaly.com

